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On the dynamics of non-holonomic constrained systems 

C A P Galvzo and Luiz J Negri? 
Centro Brasileiro de Pesquisas Fisicas, CBPF/CNPq, Rua Dr Xavier Sigaud, 150, 22290, 
Rio de Janeiro, RJ,  Brasil 

Received 26 October 1982, in final form 26 April 1983 

Abstract. We show that once the motion of a non-holonomic system is known it is possible 
to reduce the system to the holonomic form. A (singular) Lagrangian function and a 
Hamiltonian which correctly describe the dynamics of the system can be constructed. The 
procedure we have developed is applied to a well known system. 

1. Introduction 

The Lagrangian description of a mechanical system is based on the knowledge of the 
Lagrangian function which is supposed to contain all the physically relevant information 
on the system. In general, the systems which occur in nature are subjected to forces 
of constraints. Mathematically, this means that in order to give a correct description 
of the evolution of the system, one must take into account a certain number of relations 
among coordinates, velocities and time which express the existence of the forces of 
constraints. Those functions are known as constraint functions or,  simply, constraints. 

There are several kinds of constraints. Among those we will consider two very 
important classes. Denoting by qa ( t )  and cjm ( t )  the generalised coordinates and 
velocities, a = 1 , .  . . , N, we say that the constraints are holonomic or geometric 
constraints if they can be expressed as K < N equations of the form 

4c(4,r)E4t(4k?* * . , q N , t ) = O ,  i = l , .  . . , K. (1.1) 
General velocity-dependent or kinematic constraints are expressed by equations of 
the type 

~ c ( 4 , q , t ) ~ ~ , ( 4 1 , . . . , 4 , ; q , , . . ~ , q N , ~ ) = 0 ,  i = l ,  . . . ,  K. (1.2) 

When equations (1.2) cannot be reduced to the form (1.1) we say that the constraints 
are non-holonomic (Neimark and Fufaev 1972, Saletan and Cromer 1971). 

An important point on the'theory of constrained systems is the question of the 
existence of an action principle. It is known (Saletan and Cromer 1970) that the 
equations of motion for such systems can be obtained using variational techniques 
both for holonomic and non-holonomic systems, the difference in approach lying in 
the choice of the comparison paths. The results so far accepted can be summarised 
as follows. Let L E  L(q,, go, t )  = L(4,  q, t )  denote the Lagrangian function for the 
system when there are no constraints present (we call this the free Lagrangian). The 

t On leave of absence from Universidade Federal da Paraiba, Pb, Brasil. Partially supported by CAPES, 
Brazil. 
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41 84 C A P Galva'o and L J Negri 

corresponding Euler-Lagrange vector will be denoted by 

A, = (d/dt)dL/dq" -aL/aqa, a = l , .  . . , N. (1.3) 

The dynamical evolution of the system under the influence of the constraints is given 
by (1.1) and 

A, = A'a4,/aqa (1.4) 

for the holonomic system, and by (1.2) and 

A, = A '  a41/aqa (1.5) 

for non-holonomic systems. We use the convention of summing over repeated indices 
and in the above expressions A '  are Lagrange multipliers. As is already known, both 
cases can be dealt with in a unified way by using dl = 0 instead of 4, = 0 as the constraint 
equations in the holonomic case. 

The point to be emphasised is that we do not have a Lagrangian function L(q, 4, t )  
which completely describes the dynamics of the system including the information 
concerning the existence of the constraints. Consequently we do not have an associated 
action principle either. 

The existence of such a Lagrangian function is obviously desirable not only from 
the classical point of view for it would enable one to quantise the system employing 
well known procedures. For holonomic systems it is possible to construct a Lagrangian 
function. Indeed, it is given by 

L= L +  ~ ' 4 '  (1.6) 

and the associated action principle leads to the correct equations of motion and the 
constraint equations. 

It is usually accepted (Saletan and Cromer 1970, Gomes and Lobo 1979) that for 
non-holonomic systems it is not possible to construct such a Lagrangian function, so 
that, in this sense, an action principle does not exist for such systems. 

The purpose of this paper is to make some developments about the existence of a 
Lagrangian function for non-holonomic systems. We will show that once the motion 
of a non-holonomic system is known, it is possible to construct a Lagrangian function 
for the system. This Lagrangian function will correctly describe the dynamics of the 
system. With the Lagrangian so constructed, we will show how to pass to the Hamil- 
tonian formalism. We shall not be concerned with the construction of an action 
principle for non-holonomic systems. This subject is presently under investigation. 
The paper is organised as follows. In § 2 we formally analyse the existence of an action 
principle for constrained systems. In § 3 we discuss the meaning of the integrability 
conditions for non-holonomic constraints and show how to construct the Lagrangian 
function for such systems. Section 4 is devoted to an application to a well known 
system; some details are presented in order to clarify the method we have developed. 
The Hamiltonian formalism is considered in §§ 5 and 6. Final comments are given 
in § 7. 

2. The action principle for constrained systems 

Given a non-holonomic system our concern is directed to the question: can equations 
(1.2) and (1.5) be obtained from a variational principle 6 dt  = O? We understand 
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that the best way to look for an answer to this question is to analyse it from the point 
of view of the Helmholtz conditions (Engels 1975). Equations (1.2) and (1.5) are 
obtained under the hypothesis that the system being studied is described by a free 
Lagrangian function L(q, q, t) and the constraint equations (cIi(q, q, f )  = O t .  The Euler- 
Lagrange vector (1.3) corresponding to the free Lagrangian L can be written as 

.A" = (d/dt)aL/aq" -aLlaq" = B,,(q, 4, t ) d P  + c,(q, 4, t ) .  (2.1) 

The functions B,,(q, q, t )  and C,(q, 4, t )  are required to satisfy the following conditions 
(Engels 1975): 

(2.213) 

Now consider the case when there are constraints. We denote by Q A  the set 
(q",  A ' )  with the convention QA = q", for A = (Y = 1 , .  . . , N, and QA = A', for A = i = 
N +  1, . . . , N + K. Denoting by L( Q, 6, t )  the Lagrangian function associated with 
the system, the corresponding Euler-Lagrange vector is 

3 ~ ~ ( d / d t j a i ' / a Q " - a ~ / a Q ~ = B ~ ~ ( Q ,  Q, t)Q"+CA(Q, Q, t). (2.3) 

(2.4e) 

According to (1.2) and (1.5) we can ensure that L is the Lagrangian function for the 
constrained system if we impose the condition that 

3, = B,,qP + c, - A'a (c I , / aqa  = 0, 

A, = 0. 
- 

The above conditions express the fact that L( Q, b, t )  lead to the equations of motion 
(2.5), and the constraint equations (2.6). 

+ In what follows we use the following conventions: Greek indices a, p, U,. . . = 1,. , , , N ;  Latin indices i, 
j ,  k,  . . . = N + 1, . . . , N + K and capital Latin indices A, B, C, . . . = 1, 2,. . . , N + K. 
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Equations (2.5) and (2.6) can be viewed as conditions to  be imposed on the functions 

(2.7) 

BAB and CA, Using (2.3) these conditions are 
- 

BAB Bop (A  = a, B = p ; a ,  p = 1, . . . , N),  

D A B  = 0 (2.8) 

CA= co-A'a*,,jaq" ( A = a  = l , .  . . , N ) ,  (2.9) 

cA'c]=o ( A = j = N + l , .  . . , N + K ) .  (2.10) 

(A  or B = N + 1 , .  . . , N + K ) ,  

The problem now is reduced to the validity of the system (2.4a)-(2.4e) restricted 

Now, conditions (2.4a, b)  are trivially verified while conditions ( 2 . 4 ~ )  require that 
by the conditions (2.2a)-(2.2e) and (2.7)-(2.10). 

a2+, laqaaqP =o,  (2.11) 

aCl/aqP = 0. (2.12) 

The conditions (2.4d) are verified with no additional restrictionst while (2.4e) requires 
that 

a2+I laqQaqp = a2+, / a q P a q Q ,  (2.13) 

aCllaqP +a+, jaqP = 0. (2.14) 

Let us consider the meaning of these results. From (2.12) it follows that the 
functions cl are not dependent on the generalised velocities, i.e. cl = Cl(q, t ) .  
Equations (2.11) require the constraint functions to be at most linear functions of the 
generalised velocities. Equations (2.13) are the integrability conditions for the con- 
straints $,(q, q, t )  = 0, and they ensure the existence of a set of functions g,(q, t )  = 
constant such that + I  = g,. Finally, it follows from (2.14) that g, = cl. 

We have obtained the necessary conditions which ensure the existence of a 
Lagrangian function (and an associated variational principle) for the constrained 
system, namely, the constraint equations must be linear functions of the generalised 
velocities and reducible to holonomic form. These conditions can be shown to be 
sufficient. One can go a little further and write an explicit form for the Lagrangian 
function corresponding to these cases. For instance, using the procedure described by 
Engels (1975) one obtains 

L = L+ A f I .  (2.15) 

3. The reduction of non-holonomic constraints to the holonomic form 

From the results of § 2 one concludes that it is possible to construct a Lagrangian 
function and a corresponding action principle which lead to the equations of motion 
and constraint equations only for holonomic systems. 

Let us analyse this statement in some detail. For simplicity we consider a system 
subjected to only one constraint equation and write it as$ 

+ W e  used (2.12) and the fact that the functions c,(q, q, I )  d o  not depend explicitly on A ' .  
:The form of (3.1) does not introduce any essential restriction in the present investigation. 
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and take N = 3. The integrability condition for (3.1) is 

X . rot X = 0, x = (X,, x*, X3). 

If this condition is fulfilled then there exists a function (an integrating factor), say 
M ( q ) ,  such that MR is an exact differential?. 

Geometrically, the fulfilment of the integrability conditions means, for a given 
initial configuration, the existence of points in configuration space which are not 
accessible to the system by trajectories satisfying (3.1). The converse of this statement 
is also true and is just the Caratheodory theorem (Buchdahl 1949a, b). 

Now, suppose that condition (3.2) does not hold and thus R represents a non- 
holonomic constraint. What can be concluded is the non-existence of a single function, 
say d ( q ) ,  such that d d  = N(q)R, where N ( q )  is an integrating factor. Of course this 
by no means implies that the equation n= 0 does not admit solutions. Actually, it is 
well known that if we choose an arbitrary function 

x ( 4 )  = 0 ,  (3.3) 

$ ( q )  =constant = c (3.4) 

it is possible to determine another function 

such that (3.3) and (3.4) represent a solution for (3.1). In fact, from (3.3) we can write 

dX=O (3.3.1) 

so that when the form x ( q )  is specified we can use (3.3) and (3.3.1) to determine q3 
and dq3(for instance) in terms of the other q, and dq,. After substituting these relations 
in (3.1) the result will be a two-dimensional differential equation which can always be 
integrated to obtain a solution of the form (3.4) (for details see Forsyth (1903)). 

Now, assigning to x ( q )  every possible form, we obtain the whole set of possible 
solutions. These solutions represent a family of curves, each one of them being a 
solution of (3.1). 

This result admits a physical interpretation, namely, that one non-holonomic 
constraint equation can be substituted by two holonomic constraint equations according 
to the procedure described above. The question resides on the choice of the function 
~ ( 9 ) .  From the mathematical point of view the function x ( q )  is arbitrary but this is 
clearly not so from the physical viewpoint. Among the whole set of mathematically 
admissible functions there is only one which minimises the action functional, the surface 
where the motion of the system actually occurs. Therefore, this must be the surface 
x ( q )  = 0 in agreement with the basic postulate of classical mechanics, the least action 
principle. Once this function is known, one can guess which is the corresponding $ ( q )  
function for the problem at hand. These functions will behave like two holonomic 
constraints which will substitute for the original non-holonomic constraint; therefore, 
it will be possible to construct a new Lagrangian function for the system. This 
Lagrangian function will contain all the physically relevant information about the 
system including the constraints. 

One can argue about the reasons for constructing a Lagrangian function after the 
motion of the system is known. The point is that the form of the Lagrangian function 
E which we obtain is exactly the same as expressions (2.15) and it enables us to 

f This conclusion also holds for N # 3. We specialise for N = 3 only for simplicity. The basic results we 
will obtain are also valid for the general case N f 3. See Forsyth (1903). 
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construct a Hamiltonian for the system. From our point of view, this result justifies 
the efforts to construct E. 

In § 4 we apply this method to a well known non-holonomic system. The aim is 
t o  show how it works in practice and call attention to  some points where it can be 
simplified. 

4. Application: a rolling disc constrained to remain vertical 

We consider the motion of a sharp-edge homogeneous disc of mass m and radius R 
that rolls without slipping on a perfectly rough horizontal plane and is constrained to  
remain vertical. This is a well known problem (Saletan and Cromer 1970, Neimark 
and Fufaev 1972, Whittaker 1936). The generalised coordinates are chosen as follows: 
q ,  and q2 are the projection of the centre of mass on the horizontal plane, q3 is the 
angle between the plane of the disc and the q1 axis; q4 is the angle between a diameter 
of the disc and a vertical line. 

The free Lagrangian function for the system is 

L = $ m ( &  +&)+;I1& +&j:, (4.1) 
where Io is the moment of inertia of the disc with respect to an axis passing through 
its centre and II the moment of inertia with relation to a diameter. 

The  constraints for the system can be expressed by the equations 

4, = R44 COS q3 - 41 = 0 ,  

42 = Rq4 sin q3-q2 = 0. 

(4.2) 

(4.3) 
The corresponding integrability conditions are not satisfied, hence equations (4.2) and 
(4.3) represent two non-holonomic constraints. The equations of motion obtained by 
the standard procedure described in 0 1 are 

wl=-Al, t n 4 2  = - hZ,  (4.4a, b )  

I143 = 0, I 0 q 4 = h l R  cosq3+A2R sinq,, (4.4c, d )  

which must be supplemented by the constraints (4.2)-(4.3). The Lagrangian multipliers 
A ,  and A 2  can be eliminated from these equations. One obtains A ,  = mRd3g4 sin q3, 
h 2  = -mRq3q4 cos q3. Using these values we can rewrite equations (4.4a)-(4.4d) as 

(4.5a, b )  

(4.5c, d) 

Now, the solutions for equations (4.5a)-(4.54 and (4.2)-(4.3) corresponding to  
arbitrary initial data, 40 = (410, qzo, 430, q40), q o  = ( 4 1 o 1 4 z o , d 3 o ,  q40), are  

41 = a + R (440/93o) sin(43of + q3oL 42 = b - R (440/43o) COS(430f + q3d, 
(4.6a, b )  

q3 = 4 3 O f  + q30, q4 = 440f+q40, (4.6c, d) 

where a and b are two constants. 
It is worthwhile observing that the constraint equations can in general be expressed 

in several different ways. For the problem at hand it can be shown (Saletan and 
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Cromer 1970, 1971) that they can be represented by the (nonlinear) equations 

4 ;  = 4 ; + 4 ;  - p g :  = o ,  4;  = cj l  sin q3-42 COS q3=0.  (4.7a, b )  

I t  is also possible to express the constraints by a single equation (Whittaker 1936) 

4 = q1 tan q3 - 42 = 0. (4.8) 
We shall use this latter form to express the constraints. The corresponding equations 
of motion are 

mql = A tan q3, mq2 = -A ,  q3 = 0, q 4  = 0, (4 .94  b, c, d )  

which must be solved taking into account equation (4.8). For the Lagrange multiplier 
we obtain 

A =  -mq1q3. 

Using this value for A we can solve (4.9). We obtain 

91 = a+(u/430)sin(430f+q30), 42=b+Uf-(U/430) COS(430f+q30), ( 4 . 1 0 ~ ,  b )  

q3 = 430f  + q30, q 4  = 4 4 0 f +  q40, (4.10c, d )  

where a, b, U and U are constants and no use has been made of condition? (4.8). Now, 
taking into account that condition we get U = 0. Thus, it follows from (4.10) that 

(ql-a)*+(q,-b) '= u2/4:n, 4: + 4 :  = U*. 

One can easily verify that U = R440 and so the disc moves with this constant speed in 
a circle of radius Rg40/& centred at (a ,  b )  (Saletan and Cromer 1971). It also follows 
from the values of U and U that expressions (4.10a)-(4.10d) reduce to the solutions 

We now apply our method to this problem. For simplicity we set a = b = 0. From 
the solutions (4.10a)-(4.10d) it follows that the motion of the system takes place on 
the surface defined by the equation 

(4 .6~)- (4 .6d) .  

O(q) = 41 + q2 tan q3 = 0. (4.11) 

This surface must be taken as our x ( q )  function, equation (3.3). Now, following the 
procedure described in 0 3, we obtain 

$ ( q )  = 4 2 +  c cos q3 = 0 (4.12) 

where c is a constant which depends on the initial data. Equations (4.11)-(4.12) are 
the holonomic constraints that substitute for the non-holonomic one given by (4.8). 
On the other hand equations (4.11), (4.12) are equivalent to 

i ( q )  = q1 - c sin q3 = 0, 

$ ( q )  = q 2 +  c cos q3 = 0, 

(4.11 a )  

(4.13) 

and we will use this last set of equations as the holonomic constraints corresponding 
to the non-holonomic system we are considering$. Using these constraints we can 

+ In order to obtain the explicit value for A we used 6 = 0 instead of 
$ T h e  sets of equations (4.11144.12) and (4.11a)-(4.13) are, of course, equivalents. We choose to work 
with the second set because this will avoid many unnecessary calculations in what follows, 

= 0. 
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write the Lagrangian functions E for the system: 

L=$m(cj? +4: )+$1 ,4 :  +$1042 + A l ( q 2 + c  cos q 3 ) + A 2 ( q 1  - c  sinq,). (4.14) 

The Lagrangian function (4.14) carries all the relevant information for the dynami- 
cal description of the system. Indeed, considering the Lagrange multipliers as additional 
coordinates, the Euler-Lagrange equations that follow from (4.14) are 

mql = A 2 ,  (4.15a, b, c) mq2 = A , ,  1,& = -c(Al sin q 1 + A 2  cos q3) ,  

q j  = 0, q*+ c cos q 3  = 0 ,  q1  - c sin q3 = 0. ( 4 . 1 5 4  e, f) 

With the Lagrange multipliers given by 

A ,  = mcq: cos q3,  A~ = -mcq: sin q3,  

the system of equations (4.15a)-(4.15d) reduces to 

dl = -c4: sin q3, 4-- 7 - c q2  3 cos q,, q,  = 0, q4 = 0. (4.16) 

Solving this system, one will arrive at the same solutions as given by expressions 
(4.6a)-(4.6d) with a = b = Ot. 

5. The Hamiltonian approach to non-holonomic systems 

Once we have obtained the Lagrangian function associated with a non-holonomic 
system we can develop a Hamiltonian formalism. The procedure is essentially Dirac’s 
theory of constrained systems (Dirac 1964) since now we have a (singular) Lagrangian 
function to describe the system. There are, however, some peculiarities which we will 
clarify in what follows. For definiteness let us consider a Lagrangian function of the 
form (1.6), which we rewrite as 

L(q, 4, t )  = L(q,  4, t )  + A 1 d 4 ( q ) ,  (5.1) 

where the functions A ‘ are Lagrange multipliers and 41(q)  are the holonomic constraint 
functions which substitute for the non-holonomic constraint of the original problem. 
Now, the key step at this point is to treat the Lagrangian multipliers as additional 
generalised coordinates, thus formally enlarging the configuration space. The functions 
dl(q) can be considered as arbitrary functions in the sense that we d o  not need to  
consider them as constraints. This information will follow as a consequence of the 
theory. 

In order to pass to the Hamiltonian formalism we define the momenta canonically 
conjugated to the generalised coordinates (which are now the set ( q u ,  q’ = A ’ ) ) :  

This last expression follows from the fact that there is no dependence of L on the 
‘velocities’ A,.  

f As we have pointed out the value of the constant c depends on the specification of the initial data. For 
the data corresponding to solutions (1.6a)-(4.6& it can be verified that c corresponds to the radius Rq,,/4,,, 
of the circle described by the disc. 
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Equations (5.3) are the primary constraints of the theory and must be written as 
weak equations, 

7T, = 0. (5.4) 

Hence, the additional degrees of freedom we introduced are constrained by these 
equations. In general this means that the 'coordinates' A '  are arbitrary or otherwise 
determined and, as we shall see, this will be the case. 

The canonical Hamiltonian for the system is 

H,  = p,qa - t = puqa - L -  A I + ,  = H,- A'+', ( 5 . 5 )  

where H, is the canonical Hamiltonian for the system when there are no constraints, 
i.e. the 'free Hamiltonian'. According to Dirac theory we must add to the Hamiltonian 
( 5 . 5 )  a linear combination of the primary constraints (5.4) and impose the consistency 
conditions that those constraints are preserved in time. But as is usual in theories 
where some momenta are constrained to be zero?, we can freeze the momenta 7 ~ ,  

considering equations (5.4) as strong equations. 
Now, the consistency conditions for equations (5.4) lead immediately to 

h ( q )  = 0, (5 .6)  

and we recover the information that the functions 4f are the constraints of the theory. 
We must continue the procedure and impose the time preservation of the (secon- 

dary) constraints (5.6). However, now we face a new situation. It happens (at least 
for the cases we have studied) that the second step beyond (5 .6)  leads to the determina- 
tion of the functions A '  as functions of the q"'s and pa's. At this point the procedure 
must be stopped (Dirac 1950). There will remain a definite number of secondary 
constraints which are in fact second class. Now, what has to be done is to use the 
Dirac brackets with respect to these constraints and set them all strongly equal to 
zero. Therefore, the Hamiltonian we are left with is the free canonical Hamiltonian 
but the equations of motion are given in terms of Dirac brackets, 

f = { E  Hc)*={F7 H c } - { F ,  41}c;1{4,,Hc} (5.7) 

where C,' denotes the elements of the matrix inverse of C = ll{df, c$,}ll. 

6. The Hamiltonian approach for the rolling disc 

We now apply the method described in § 5 to the problem we dealt with in 0 4. The 
Lagrangian function is given by expression (4.14), 

(6.1) L= ; [ m ( g :  +&) + z l& +1~4: ]+q~e ,  +q6e2, 

where we used the notation 

A I  = 453 A 2  = q6, q 2 + ~ ~ 0 S q 3 = e 1 ,  q1 - c sin q3 = 02. (6 . la ,  b, c, d )  

The corresponding canonical Hamiltonian is 

Hc = H, - q s  61 - (6.2) 

t This is the case, for instance, in the canonical formalism of the general theory of relativity where the 
momenta conjugated to the lapse and shift functions are constrained to be zero (Misner et al 1973). See 
also Dirac (1950). 
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where H, is the free canonical Hamiltonian 

H, = ( 1 / 2 m 1 ( P : + P ; 1 + ( 1 / 2 I1 1 P : + ( 1 / 2 I* ) P! . 
The primary constraints are 

?TI =o,  x* = 0, 

with r l  defined by equations (5.3). 
The consistency conditions 7il = 0 lead to 

(6.3) 

(6.4) 

el = 0, e2 = 0. (6.5a, b )  

Imposing the time preservation of the secondary constraints (6.5a, b )  we obtain two 
new secondary constraints, 

0 3  = P Z /  m - (cpd I , )  sin q 3  = 0, 

The time preservation of O 3  and O4 leads to  the following expressions for q5 and q6: 

e 4  = PI/" - (cp3/I1) cos q 3  0. (6 .64 b )  

q 5  = (mcp:/I:) cos q 3 ,  q6 = -(mcp:/I:) sin q3.  (6.7a, b )  

The procedure must now stop and we are left with the set of (secondary) constraints 
{e,}, i = 1, 2, 3, 4, which are, in fact, second class. We  have the following brackets 
among them: 

{ @ I >  82}=0, {e,, e,}= l / m + ( c 2 / I , ) s i n 2 q 3 ,  

1 6 3 ,  e,> = ( c 2 / I :  ) P 3 .  

{el,  e,)= ( c 2 / l I )  sin q, cos q3, 

(6.8) e,} = ( c * / l l )  sin q3 cos q3,  {e2 ,  e,}= l / m + ( c 2 / I l )   COS^^^, 

In order to write the Hamiltonian equations of motion we need the matrix C',  
inverse of C =I[{& @,}I/. From (6.8) we obtain 

h 5 det //{e,, e,}(( = [(I1 + mc2)/m2I1I2 f 0. (6.9) 

A straightforward calculation leads to 

0 I1 0 

We  now use the Dirac brackets with respect to the secondary constraints {ei} and set 
all the constraints strongly equal to zero. The equation of motion for an  arbitrary 
dynamical variable is given by 

= IF, HJ* = {F,  H,) - (mcd/ I :  ) ( { E  0, )  cos q3 - { E  0,) sin q 3 ) .  (6.11) 

It is an easy task now to  show that (6.11) leads to the same equations of motion as 
obtained before, namely (4.16). 



Dynamics of non-holonomic constrained systems 4193 

7. Final comments 

In this paper we have established a procedure to  transform a non-holonomic system 
into an  equivalent holonomic system. A singular Lagrangian function associated with 
the equivalent holonomic system is written down based on the knowledge of the surface 
(a submanifold of the configuration space) where the motion actually occurs. The  
reduction scheme we have established does not lead to  a holonomic system which 
could possibly be quantised using the standard techniques (Dirac 1964, Fradkin and 
Vilkovisky 1977). O n e  difficulty is the presence of the initial data of the classical 
solution in the Hamiltonian (the constant c which appears in the constraint equations 
(6.1c)-(6.1d)). There is also the problem of the quantum fluctuations which would 
be restricted to  the surface where the motion occurs. Even so, it is our opinion that 
the effort to establish the reduction procedure is worthwhile, at  least from the point 
of view of the theoretical framework of classical mechanics. 

W e  did not touch on the question of constructing an action functional for non- 
holonomic systems which, as yet, is an open problemt. Our  procedure does not lead 
to any specific simplification of this problem. However, we expect that a deeper analysis 
might shed some light on the direction to be taken in order to overcome this question. 

Finally, we mention that our procedure does not share any relation with the 
procedures proposed long ago by J W Campbell and others (see Campbell (1936) and 
references therein). 
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